Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: covidwho-20243838

RESUMEN

Diffuse parenchymal lung diseases (DPLD) or Interstitial lung diseases (ILD) are a heterogeneous group of lung conditions with common characteristics that can progress to fibrosis. Within this group of pneumonias, idiopathic pulmonary fibrosis (IPF) is considered the most common. This disease has no known cause, is devastating and has no cure. Chronic lesion of alveolar type II (ATII) cells represents a key mechanism for the development of IPF. ATII cells are specialized in the biosynthesis and secretion of pulmonary surfactant (PS), a lipid-protein complex that reduces surface tension and minimizes breathing effort. Some differences in PS composition have been reported between patients with idiopathic pulmonary disease and healthy individuals, especially regarding some specific proteins in the PS; however, few reports have been conducted on the lipid components. This review focuses on the mechanisms by which phospholipids (PLs) could be involved in the development of the fibroproliferative response.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/uso terapéutico , Surfactantes Pulmonares/metabolismo , Fosfolípidos , Pulmón/patología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/patología
2.
Sci Rep ; 12(1): 4040, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1908245

RESUMEN

To provide novel data on surfactant levels in adult COVID-19 patients, we collected bronchoalveolar lavage fluid less than 72 h after intubation and used Fourier Transform Infrared Spectroscopy to measure levels of dipalmitoylphosphatidylcholine (DPPC). A total of eleven COVID-19 patients with moderate-to-severe ARDS (CARDS) and 15 healthy controls were included. CARDS patients had lower DPPC levels than healthy controls. Moreover, a principal component analysis was able to separate patient groups into distinguishable subgroups. Our findings indicate markedly impaired pulmonary surfactant levels in COVID-19 patients, justifying further studies and clinical trials of exogenous surfactant.


Asunto(s)
Líquido del Lavado Bronquioalveolar/química , COVID-19/patología , Surfactantes Pulmonares/análisis , 1,2-Dipalmitoilfosfatidilcolina/análisis , Adulto , Anciano , COVID-19/virología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Componente Principal , Surfactantes Pulmonares/metabolismo , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Espectrofotometría Infrarroja/métodos
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(6): 159139, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1719329

RESUMEN

Pulmonary surfactant is a mixture of lipids and proteins, consisting of 90% phospholipid, and 10% protein by weight, found predominantly in pulmonary alveoli of vertebrate lungs. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), are present within the alveoli at very high concentrations, and exert anti-inflammatory effects by regulating multiple Toll like receptors (TLR2/1, TLR4, and TLR2/6) by antagonizing cognate ligand-dependent activation. POPG also attenuates LPS-induced lung injury in vivo. In addition, these lipids bind directly to RSV and influenza A viruses (IAVs) and block interaction between host cells and virions, and thereby prevent viral replication in vitro. POPG and PI also inhibit RSV and IAV infection in vivo, in mice and ferrets. The lipids markedly inhibit SARS-CoV-2 infection in vitro. These findings suggest that both POPG and PI have strong potential to be applied as both prophylaxis and post-infection treatments for problematic respiratory viral infections.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Surfactantes Pulmonares , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Hurones/metabolismo , Pulmón/metabolismo , Ratones , Fosfolípidos/metabolismo , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacología , SARS-CoV-2 , Receptor Toll-Like 2
4.
Cells ; 11(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1580995

RESUMEN

The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Canales Iónicos/metabolismo , Cuerpos Lamelares/metabolismo , Pulmón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Surfactantes Pulmonares/metabolismo , COVID-19/virología , Humanos , Pulmón/virología , Orgánulos/metabolismo , Orgánulos/virología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/virología , SARS-CoV-2/fisiología
6.
Clin Sci (Lond) ; 135(22): 2559-2573, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1541262

RESUMEN

Granulocyte macrophage colony stimulating factor (GM-CSF) is a key participant in, and a clinical target for, the treatment of inflammatory diseases including rheumatoid arthritis (RA). Therapeutic inhibition of GM-CSF signalling using monoclonal antibodies to the α-subunit of the GM-CSF receptor (GMCSFRα) has shown clear benefit in patients with RA, giant cell arteritis (GCAs) and some efficacy in severe SARS-CoV-2 infection. However, GM-CSF autoantibodies are associated with the development of pulmonary alveolar proteinosis (PAP), a rare lung disease characterised by alveolar macrophage (AM) dysfunction and the accumulation of surfactant lipids. We assessed how the anti-GMCSFRα approach might impact surfactant turnover in the airway. Female C57BL/6J mice received a mouse-GMCSFRα blocking antibody (CAM-3003) twice per week for up to 24 weeks. A parallel, comparator cohort of the mouse PAP model, GM-CSF receptor ß subunit (GMCSFRß) knock-out (KO), was maintained up to 16 weeks. We assessed lung tissue histopathology alongside lung phosphatidylcholine (PC) metabolism using stable isotope lipidomics. GMCSFRß KO mice reproduced the histopathological and biochemical features of PAP, accumulating surfactant PC in both broncho-alveolar lavage fluid (BALF) and lavaged lung tissue. The incorporation pattern of methyl-D9-choline showed impaired catabolism and not enhanced synthesis. In contrast, chronic supra-pharmacological CAM-3003 exposure (100 mg/kg) over 24 weeks did not elicit a histopathological PAP phenotype despite some changes in lung PC catabolism. Lack of significant impairment of AM catabolic function supports clinical observations that therapeutic antibodies to this pathway have not been associated with PAP in clinical trials.


Asunto(s)
Artritis Reumatoide/metabolismo , COVID-19/terapia , Proteinosis Alveolar Pulmonar/inmunología , Surfactantes Pulmonares/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Artritis Reumatoide/terapia , Autoanticuerpos/química , Líquido del Lavado Bronquioalveolar , COVID-19/inmunología , Colina/análogos & derivados , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Inflamación , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteinosis Alveolar Pulmonar/genética , SARS-CoV-2/inmunología , Tensoactivos
7.
Clin Immunol ; 215: 108426, 2020 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1385285

Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Pneumocystis carinii/inmunología , Neumonía por Pneumocystis/inmunología , Neumonía Viral/inmunología , Proteínas Asociadas a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Glicoproteína de la Espiga del Coronavirus/química , Secuencia de Aminoácidos , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Betacoronavirus/patogenicidad , COVID-19 , Coronavirus Humano 229E/inmunología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/inmunología , Reacciones Cruzadas , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/inmunología , Pandemias , Pneumocystis carinii/patogenicidad , Neumonía por Pneumocystis/genética , Neumonía por Pneumocystis/patología , Neumonía por Pneumocystis/virología , Neumonía Viral/genética , Neumonía Viral/patología , Neumonía Viral/virología , Unión Proteica , Proteínas Asociadas a Surfactante Pulmonar/genética , Proteínas Asociadas a Surfactante Pulmonar/inmunología , Surfactantes Pulmonares/inmunología , Surfactantes Pulmonares/metabolismo , SARS-CoV-2 , Homología de Secuencia de Aminoácido , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
Sci Rep ; 10(1): 19395, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: covidwho-919379

RESUMEN

An incomplete understanding of the molecular mechanisms behind impairment of lung pathobiology by COVID-19 complicates its clinical management. In this study, we analyzed the gene expression pattern of cells obtained from biopsies of COVID-19-affected patient and compared to the effects observed in typical SARS-CoV-2 and SARS-CoV-infected cell-lines. We then compared gene expression patterns of COVID-19-affected lung tissues and SARS-CoV-2-infected cell-lines and mapped those to known lung-related molecular networks, including hypoxia induced responses, lung development, respiratory processes, cholesterol biosynthesis and surfactant metabolism; all of which are suspected to be downregulated following SARS-CoV-2 infection based on the observed symptomatic impairments. Network analyses suggest that SARS-CoV-2 infection might lead to acute lung injury in COVID-19 by affecting surfactant proteins and their regulators SPD, SPC, and TTF1 through NSP5 and NSP12; thrombosis regulators PLAT, and EGR1 by ORF8 and NSP12; and mitochondrial NDUFA10, NDUFAF5, and SAMM50 through NSP12. Furthermore, hypoxia response through HIF-1 signaling might also be targeted by SARS-CoV-2 proteins. Drug enrichment analysis of dysregulated genes has allowed us to propose novel therapies, including lung surfactants, respiratory stimulants, sargramostim, and oseltamivir. Our study presents a distinct mechanism of probable virus induced lung damage apart from cytokine storm.


Asunto(s)
Infecciones por Coronavirus/genética , Infecciones por Coronavirus/metabolismo , Perfilación de la Expresión Génica , Pulmón/metabolismo , Terapia Molecular Dirigida , Neumonía Viral/genética , Neumonía Viral/metabolismo , Surfactantes Pulmonares/metabolismo , Biología de Sistemas , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Epigénesis Genética , Humanos , Pulmón/efectos de los fármacos , Especificidad de Órganos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/inmunología , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA